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Bifurcation diagram for compartmentalized granular gases

Devaraj van der Meer, Ko van der Weele, and Detlef Lohse
Department of Applied Physics and J.M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217,
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The bifurcation diagram for a vibrofluidized granular gas inN connected compartments is constructed and
discussed. At vigorous driving, the uniform distribution~in which the gas is equi-partitioned over the com-
partments! is stable. But when the driving intensity is decreased this uniform distribution becomes unstable and
gives way to a clustered state. For the simplest case,N52, this transition takes place via a pitchfork bifurcation
but for all N.2 the transition involves saddle-node bifurcations. The associated hysteresis becomes more and
more pronounced for growingN. In the bifurcation diagram, apart from the uniform and the one-peaked
distributions, also a number of multipeaked solutions occur. These are transient states. Their physical relevance
is discussed in the context of a stability analysis.
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I. INTRODUCTION

One of the key features of a granular gas is the tende
to spontaneously separate into dense and dilute reg
@1–6#. This clustering phenomenon manifests itself in a p
ticularly clear manner in a box that is divided in a series oN
connected compartments, with a hole~at a certain height! in
the wall between each two adjacent compartments. The
tem is vibrofluidized by shaking the box vertically. Wit
vigorous shaking the granular material is observed to be
tributed uniformly over the compartments as in any ordin
molecular gas. Below a certain driving level, however, t
particles cluster in a small subset of the compartments, e
tying all the others.

For N52 the transition from the uniform to the clustere
state is of second order, taking place through a pitchf
bifurcation@7#. For N53 it was recently found that the tran
sition is hysteretic. It is a first-order phase transition, invo
ing saddle-node bifurcations@8#. This difference has bee
explained by a flux model. In the present paper we will u
the same flux model to construct the bifurcation diagrams
arbitraryN.

The main ingredient of this model is a flux functionF(n),
which gives the outflow from a compartment to one of
neighbors as a function of the fraction of particles~n! con-
tained in the compartment@7#. The functionF(n) starts out
from zero atn50 and initially increases withn. At large
values ofn it decreases again because the particles lose
ergy in the nonelastic collisions, which become more a
more frequent with increasing particle density. SoF(n) is
nonmonotonic, and that is why the flux from a well-fille
compartment can balance that from a nearly empty comp
ment.

Assuming that the granular gas in each compartment i
thermal equilibrium at any time~in the sense of the granula
temperature@9#! the following approximate form forF(n)
can be derived@7#:

F~nk!5Ank
2e2BN2nk

2
, ~1!

which is a one-humped function, possessing the features
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cussed before~see Fig. 1!. In the above equationnk is the
fraction of particles in thekth compartment, normalized to
Snk51. The factorsA andB depend on the number of pa
ticles and their properties~such as the radius, and the res
tution coefficient of the interparticle collisions!, on the ge-
ometry of the system~such as the placement and form of th
aperture between the compartments!, and on the driving pa-
rameters~frequency and amplitude!. The factorA determines
the absolute rate of the flux, and will be incorporated in t
time scale, which thus becomes dimensionless. The clus
ing transition is governed only byB.

The time rate of changeṅk of the particle fraction in the
kth compartment is given by the inflow from its two neig
bors minus the outflow from the compartment itself,

ṅk5F~nk21!22F~nk!1F~nk11!, ~2!

with k51,2, . . . ,N. Here we have assumed that the intera
tion is restricted to neighboring compartments only.

For a cyclic arrangement the above equation is valid
all N compartments~with k5N11 equal tok51!. If we
take noncyclic boundary conditions, by obstructing the fl
between two of the compartments, the equation has to
modified accordingly for these compartments.

The total number of particles in the system is conserv
(Sknk51), so

(
k

ṅk50. ~3!

Statistical fluctuations in the system would add a no
term to Eq.~2!, but we will not consider such a term here. S
the present analysis has to be interpreted as a mean
theory for the system.

Equation ~2! can also be written in matrix-form, asṅ
5M•F, or more explicitly:
©2001 The American Physical Society04-1
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ṅk5(
l

MklF~nl !

~4!

5S 22 1 0 0 ¯ 0 1

1 22 1 0 ¯ 0 0

0 1 22 1 ¯ 0 0

A A A A A A

1 0 0 0 ¯ 1 22

D S F~n1!

F~n2!

F~n3!

A
F~nN!

D .

The given matrixM corresponds to a cyclic arrangeme
of the N compartments. A similar matrix can be writte
down for the case of a noncyclic arrangement. We will co
back to this later, when we will see that most of the resu
for the cyclic arrangement carry over to the noncyclic ca

It is easily seen, from the fact that the elements of e
row of M sum up to zero, that15(1,1, . . . ,1) is aneigen-
vector. The corresponding eigenvaluel50 physically re-
flects the fact that the compartments cannot all be filled~or
emptied! simultaneously:Skṅk50 or S lM lk50. For future
reference we note that all the other eigenvalues ofM are
negative~see the Appendix!.

The remainder of the paper is set up as follows. In Sec
we show how to construct the bifurcation diagram, on
basis of Eq.~4!, for an arbitrary number of compartments.
Sec. III we discuss the stability of the various branches in
diagram. Section IV discusses the physical consequence
sulting from the diagram, in particular in the limit forN
→`. Finally, Sec. V contains concluding remarks. The p
per is accompanied by a mathematical Appendix, in wh
some essential results concerning the stability analysis
derived.

II. CONSTRUCTING THE BIFURCATION DIAGRAM

To calculate the bifurcation diagram, we have to find t
fixed points of Eq.~4! as a function of the parameterB, i.e.,
those points for whichṅk5M•F50. SoF must be a multiple
of the zero-eigenvalue vector15(1,1,...,1). This tells us
that, in a stationary situation, all components of the flux v
tor F are equal: there is a detailed balance between all p
of neighboring compartments. This rules out, for instan
the possibility of stable wavelike patterns with equal b
nonzero net fluxes throughout the system. The fixed-p
condition now becomes

F~nk!5const,
~5!

( nk51.

SinceF is a one-humped function,F(nk)5const has two
solutions, which will be calledn2 andn1 ~see Fig. 1!. Every
fixed point can be represented as a vector with elementsn2

andn1 ~in any order, and summing up to 1! corresponding to
a row of nearly empty and well-filled compartments. Let
call the number of well-filled compartmentsm. Apart from
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the ordering of the elements, every fixed point is then spe
fied by only two numbers:n1 andm.

Before actually calculating the bifurcation diagram, it
convenient to replace the fractionn by the ~also dimension-
less! variable z5NnAB, as then the flux~1! simplifies to
F(zk)}zk

2 exp(2zk
2). The fixed-point condition Eq.~5! then

reads

F~zk!5const,
~6!

( zk5NAB.

So the B dependence has been transferred fromF to the
particle conservation, and this enables us to determine
entire bifurcation diagram from a single graph. This is illu
trated in Fig. 2 for the case ofN55 compartments.

FIG. 1. The solutionsn2 andn1 of F(nk)5const, cf. Eq.~5!.
Also shown is how the flux balance responds to an increase ofn2

by an amount ofdn @see also Eq.~11!#. The diagram on the right-
hand side depicts the relation betweenF and the quantitys
5F8(n1)/F8(n2), which plays an important role in the stabilit
analysis of Sec. III.

FIG. 2. Inverted flux functionsz2(F) and z1(F) and theN
11 sum functions Sm(F)5mz1(F)1(N2m)z2(F), m
50,1,...,N. Here we pickedN55. The points of intersection with
the horizontal linez5NAB represent the fixed points for the pa
rameter valueB. CurvesS0 andS5 correspond to the uniform dis
tribution ~below and above the critical pointB51, respectively! and
the other curves belong to clustered states. Note thatS0 joins
smoothly withS5 at B51 ~i.e., z5NAB55!, and so doesS1 with
S4 , andS2 with S3 .
4-2
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First, the one-humped functionF(z) is inverted separately
on both sides of the maximum, yielding the functionsz2(F)
andz1(F). Then, we construct the sum functions

Sm~F !5mz1~F !1~N2m!z2~F !. ~7!

Now, from Eq. ~6!, the fixed points are found by inter
secting the horizontal linez5NAB with the sum functions
Sm(F). In Fig. 2 this is done forB51.08. Each intersection
point yields a pair$z2 ,z1%, or equivalently$n2 ,n1%. Re-
peating the procedure for allB, we obtain the bifurcation
diagram depicted in Fig. 3.

It contains several branches. First, a horizontal line~from
the sum functionsS0 and S5! corresponding to the equa
distributionn15n250.251/N. Second, the branches corr
sponding to them51 clustered state~from S1!, which atB
51 goes over into them54 state~from S4!. And third, the
branch of them52 clustered state~from S2!, which at B
51 becomes them53 state. The physical appearance
these solutions is sketched in the small diagrams. Note
only the m50 branch~i.e., the uniform solution up toB
51! and the outerm51 branch are stable. All the othe
branches are unstable, as will be discussed in the next
tion.

At B51, where the branches intersect with the unifo
distribution n15n251/N, we have a critical point. In the
flux function one passes the maximum here. This means
n1 andn2 are switched~relatively empty compartments be
come relatively filled, and vice versa!, som-branches change
into (N2m)-branches. From a physical point of view, th
most important thing that happens at theB51 intersection
point is the destabilization of the uniform distribution.

The saddle-node bifurcations of them51 and m52
branches correspond to the minima of the sum functionsS1
andS2 , respectively, which in Fig. 2 can be seen to occur
F'0.014 forS1 andF'0.202 forS2 . In general, if a sum
function Sm(F) has a minimum for a certainB, the associ-
ated m branch will have a bifurcation. So the bifurcatio
condition is that the derivativedSm(F)/dF equals zero, or
equivalently

FIG. 3. Bifurcation diagram forN55. It has been obtained from
Fig. 2 by converting, for allB, each$z2 ,z1% pair belonging to a
point of intersection to a$n2 ,n1% pair. Note that all branches com
together at the critical pointB51. The ~stable! m50 branch be-
comes the~unstable! m55 branch, them51 branches turn into the
m54 branches, andm52 switches tom53.
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S dz2

dF D
S dz1

dF D 52
m

N2m
. ~8!

Not surprisingly, the quantity on the left-hand sid
(dz2 /dz1[s) will play an important role in the stability
analysis of the next section.

III. STABILITY OF THE BRANCHES

The stability of the branches~i.e., of the fixed points! is
determined by the eigenvalues of the Jacobi matrixJ corre-
sponding to Eq.~4!, with components

Jjk5
]ṅ j

]nk
5(

l
M jl F8~nl !

]nl

]nk
5M jkF8~nk!. ~9!

HereF8 denotes the derivative ofF with respect ton. Note
that the Jacobi matrix can also be written as the product oM
and the diagonal matrixD5diag„F8(n1),...,F8(nN)…, see
also Eq.~A5! in the Appendix. For a fixed point the onl
diagonal elements that occur areF8(n1) ~m times! and
F8(n2) ~N2m times!, in any order. The ratio between thes
two functions is precisely the quantity we encountered e
lier in the bifurcation condition Eq.~8!, namely,s :

s5
F8~n1!

F8~n2!
5

dn2

dn1
. ~10!

The Jacobi matrixJ hasN eigenvalues, one of which is al
ways zero. The otherN21 eigenvalues depend onm and the
value ofs.

For m50 ~the equipartitioned state! all nontrivial eigen-
values are negative, up to the pointB51. This can be seen
either by direct numerical calculation, or analytically~see the
Appendix!. At B51, the m50 state becomes them5N
state. Here, the functionsF8 in the Jacobi matrix~9! change
sign, and so do all of its eigenvalues. So suddenly the u
form state hasN21 positiveeigenvalues, which implies a
high degree of instability. Only in the limitB→` does the
uniform state regain some of the lost terrain: the magnitu
of all positive eigenvalues tends to zero here. Physica
speaking, in this limit the vibrofluidization is too weak t
drive the particles out of the boxes anymore.

As for the other values ofm, in Fig. 4 we have plotted the
numerically evaluated eigenvalues~as functions ofs! for the
system withN55 compartments.

For m51, we see that there are three eigenvalues that
always negative. The fourth nontrivial eigenvalue chang
sign ats520.25. This corresponds to the saddle-node
furcation of them51 branch in the bifurcation diagram~Fig.
3!, and the bifurcation value ofs is in agreement with Eq.
~8!. The region to the right ofs520.25 ~where all non-
trivial eigenvalues are negative! belongs to the stable oute
branch. The left parts,20.25 belongs to the unstable inne
branch, up to the pointB51 ~at s521!, where them51
4-3
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branch goes over into them54 branch. That is, the stat
$12222% now switches to$21111%. At the same time
all eigenvalues change sign, so suddenly we have three p
tive eigenvalues, which is only one less than that for
uniform m55 state.~Indeed, the only stable manifold of th
m54 fixed point comes from the direction of the complete
unstablem55 state.! The positive eigenvalues do not cro
zero anymore~there are no bifurcations beyondB51! but,
as before, in the limitB→` (s→0) they go to zero.

For m52 there are two possible configuration
$11222% and $12122%. Due to the cyclic symmetry
all other combinations are equivalent to these two. The
genvalues of the first configuration are given by the dot
lines, and those of the second by the solid lines. Althou
they are very similar~and are represented by exactly t
same branch in the bifurcation diagram!, it is clear that the
second configuration is the more stable of the two. App
ently the two well-filled compartments prefer to keep a d
tance.

The saddle-node bifurcation of them52 branch takes
place ats52 2

3 @cf. Eq. ~8!#, where the third nontrivial ei-
genvalue goes through zero. The fourth nontrivial eigenva
always remains positive, indicating that them52 branch

FIG. 4. Eigenvalues of the Jacobi matrixJ as a function ofs,
for the branchesm51, 2, 3, and 4. Rather than plottingl i , we

display l̃ i5l i /F8(n2), because this yields a more clear-cut p
ture. Negative eigenvalues represent stable directions of
branches, and positive eigenvalues represent unstable ones. A
crossing~such as form51 andm52! indicates the occurrence of
saddle-node bifurcation. The values50 corresponds to the limi
B→`, and s521 to the critical pointB51. At this point, the
eigenvalues ofm51 andm54 are equal but opposite in sign: th
transition from one branch to the other is marked by a distinct d
in stability. The same is true for the eigenvalues ofm52 andm
53, and also~not depicted! for those ofm50 andm55. For m
52,3 there are two different cluster configurations with differe
eigenvalues. The dashed lines correspond to$11222% for m
52, which goes over into$22111% for m53. The bold lines
apply to the slightly more stable configurations$12122% and
$21211%.
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never becomes completely stable.~As a matter of fact, only
the m50 branch and part of them51 branch can be com
pletely stable.! Note that for s→0 ~large B! the positive
eigenvalue tends to zero, so the degree of instability is q
weak there.

At B51 the m52 branch becomes them53 branch,
with the two configurations$22111% and $21211%,
and with all eigenvalues switching sign. As we see, the m
dispersed configuration is again the less unstable one. A
the phenomenon of all positive eigenvalues going to zero
s approaches zero~the weak driving limitB→`! is again
apparent.

In the present example forN55, and, in fact, for all odd
values ofN, the branches in the bifurcation diagram are
born by means of a saddle-node bifurcation. But foreven
values ofN this is different: in that case there is one branc
pair that springs from the uniform distribution, atB51, by a
pitchfork bifurcation. This is illustrated in Fig. 5 forN56.
Here one sees all the branches that were present alread
N55, only slightly shifted toward the left, plus an addition
pair of branches (m53) bifurcating in the forward direction
from B51.

The special status of the branchm5N/2 is also evident
from Eq.~8!, which tells us that the bifurcation condition fo
this branch iss521. This condition is fulfilled only by
n15n251/AB51/N. So, unlike all other branches, this on
originates atB51 from the~until then stable! uniform state.
Related to this, the branch is the only one that is symme
for interchangingn1 andn2 .

IV. PHYSICAL ASPECTS

The bifurcation analysis from the previous section c
also be understood from a more physical point of view.
this end, let us first have a closer look at a two-box syste
In the equilibrium situation the net flux between the tw
boxes is zero, with one filled (n1) and one nearly empty
(n2) box. Suppose the level of the empty box is raised by
amountdn. The level of the filled box then decreases by
equal amount and the net fluxf2→1 from the empty to the
filled box becomes~see also Fig. 1!:

e
ero

p

t

FIG. 5. Bifurcation diagram forN56. Note the pitchfork bifur-
cation atB51.
4-4
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f2→15F~n21dn!2F~n12dn!

~11!

5S dF

dn2
1

dF

dn1
D dn5~11s!

dF

dn2
dn,

where we have useds5dn2 /dn1 and neglected the higher
order terms in the Taylor expansion. There are two differ
regimes. Ifs.21, the net flux is positive@as F8(n2) is
always positive#, so particles are flowing fromn2 to n1 ,
restoring the equilibrium position. This is actually the situ
tion along the entirem51 branch, for all 1,B,`. For s
,21 ~a situation that does not occur for our choice ofF !,
the net flux would be negative, raising the level of the em
tier box even further, away from the equilibrium position.
the borderline case,s521 ~at B51!, the system is indif-
ferent to infinitesimal changes.

This argument is readily generalized to th
N-compartment system, for an equilibrium withm filled
boxes. Now we raise the level of allN2m nearly
empty boxes simultaneously bydn. This is done by lower-
ing all levels in them filled boxes by an equal amoun
which by particle conservation must be equal
dn(N2m)/m. The equivalent of Eq.~11! for the flux be-
tween any of the empty boxes to a neighboring filled b
then reads:

f2→15F~n21dn!2FS n12
N2m

m
dnD

5S dF

dn2
1

N2m

m

dF

dn1
D dn ~12!

5S m

N2m
1s D dF

dn2
dn.

From this expression it follows that the transition betwee
~relatively! stable@s.2m/(N2m)# and a~relatively! un-
stable@s,2m/(N2m)# configuration is marked by the bi
furcation condition Eq.~8!. So, by straightforward physica
reasoning we have reproduced the exact result obtained
lier from an eigenvalue analysis.

The pitchfork bifurcation discussed at the end of Sec.
is especially important forN52. In this case it is theonly
nonuniform branch. To be specific, it is a stablem51
branch. ThisN52 case@7# is the only one without any
saddle-node bifurcations, and consequently it is the only c
where the change from the uniform to the clustered situa
takes place via a second-order phase transition without
hysteresis. For allN.2 the transition is of first order@8#, and
shows a hysteretic effect that becomes more pronounced
growing N.

In the limit N→` the hysteresis is maximal: the firs
saddle-node bifurcation takes place immediately afterB50,
and this means that there exists a stablem51 solution over
the entire rangeB.0. So, if one starts out from this solutio
~at a certain value ofB! and then gradually turns downB,
06130
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one will never witness the transition to the uniform distrib
tion. Vice versa, also the transition from the uniform soluti
to them51 state will not occur in practice, even though th
uniform distribution becomes unstable atB51. If one starts
out from the uniform solution~at a certain value ofB below
1! and increasesB, one will witness the transition to a clus
tered state, but in practice this will always be one with
number of peaks. That is, the system gets stuck in a trans
state withm.1, even though such a state is not stable~it has
one or more positive eigenvalues!.

The fact is that its lifetime may be exceedingly larg
since the flux in the neighborhood of a peak and its adjac
boxes~which are practically empty! is very small. Further-
more, the communication between the peaks is so p
that usually~even for moderate values ofN! the dynamics
comes to a standstill in a state with peaks of uneq
height.

Another point we would like to address is that practica
the transition to a clustered state will take place already
fore B51, because the solution is kicked out of its basin
attraction by the statistical fluctuations in the system@8#. An
example is shown in Fig. 6. Here we see a snapshot for
cyclic system withN580 compartments, which were orig
nally filled almost uniformly, atB50.90. The small random
fluctuations in the initial condition are sufficient to brea
away from the~still stable! uniform distribution, and one
witnesses the formation of a number of isolated clusters
the further evolution these clusters deplete the neighbo
compartments and indeed the whole intermediate regio
But the peaks themselves, once they are well-developed
not easily break down anymore.

FIG. 6. Results from a numerical solution of Eq.~4! for N
580, atB50.90. Snapshots are taken after 100, 102, 104, and 106

time steps~iterations!. Between 100 and 10 000 iterations a cluste
ing pattern is seen to take shape. Although, strictly speaking, th
a transient state, the system gets stuck in it.
4-5
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V. CONCLUDING REMARKS

In this paper we have constructed the bifurcation diagr
for a vibrofluidized granular gas inN connected compart
ments. Let us now comment upon the result.

Starting out fromB50, i.e., vigorous shaking, the equ
partitioned state is for some time the only~and stable! fixed
point of the system. For increasingB we first come upon the
m51 bifurcation, where the single-cluster state is born. F
all N.2 this happens by means of a saddle-node bifurcat
creating one completely stable state and one unstable
~with one positive eigenvalue!. The one with the largest dif
ference betweenn1 and n2 is the stabler one of the two
states. Strictly speaking, there areN equivalent single-cluste
states, since the cluster can be in any of theN compartments.

For further growingB we come across them52 bifurca-
tion, where two unstable two-peaked states are created.
state with the largest difference betweenn1 andn2 has one
positive eigenvalue, and the other has two. The two pe
can be distributed in (2

N) ways over theN compartments, bu
as we have seen they are not all equivalent. When the p
are situated next to each other we have a more unstable
ation ~the positive eigenvalues are larger in magnitude! than
when the peaks are further apart. This is generally true
m-peaked solutions: of the (m

N) ways in whichm peaks can be
distributed, the ones in which the peaks are next to e
other are the least favorable of all.

For increasingB we encounter more and more bifurc
tions, where unstablem-clustered states come into existen
~each with 1 more positive eigenvalue than the previo
one!, and for largeN the bifurcation diagram is covered by
dense web of branches. In Fig. 7 this is shown forN580.

FIG. 7. Bifurcation diagram forN580. The hysteresis extend
almost all the way down toB50, and there are numerous transie
states~cf. Fig. 6!. The only strictly stable branches are them50
branch ~up to B51! at nk51/N, and the outerm51 branches.
Naturally, the upperm51 branch approachesnk51, the upperm
52 branch approachesnk51/2, the upperm53 branchnk51/3,
etc. The overlay picture shows the neighborhood of the crit
point atB51, nk51/N in more detail.
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The last saddle-node bifurcation takes place shortly be
B51 and, for this even value ofN, is followed by a final
pitchfork bifurcation~creating them5N/2 branch! at B51.

The uniform solution~or m50 state! is stable untilB
51, with N21 negative eigenvalues and 1 zero. ForB.1
all its negative eigenvalues become positive, making it s
denly the most unstable state of all. Also, it now forma
becomes them5N state. Moving away from this uniform
solution one encounters first them5N21 branch withN
22 positive eigenvalues, then them5N22 branch withN
23 positive eigenvalues, etc. Finally, one arrives at the o
ermost m51 branch, which has no positive eigenvalue
This is the only solution that is completely stable forB.1.
But as we have seen in the previous section, on its way fr
the uniform distribution to the single-peaked state, t
system can easily get stuck in one of the transient st
~especially for largeN! even though these are not strict
stable.

Throughout the paper, we have concentrated on the c
where theN compartments are arranged in a cyclic mann
But in doing so, we have in fact also solved the noncyc
case. Here we close the hole in the wall between the first
Nth compartments, and consequently the flux between th
is zero. The matrixM then takes the following form@differ-
ing from the cyclic one only in the first and last row, c
Eq. ~4!#:

M ~nc!5S 21 1 0 0 ¯ 0 0

1 22 1 0 ¯ 0 0

0 1 22 1 ¯ 0 0

A A A A A A

0 0 0 0 ¯ 22 1

0 0 0 0 ¯ 1 21

D .

~13!

The eigenvalue problem for this matrix is treated in t
Appendix. One eigenvalue is identically zero, and the ot
N21 eigenvalues are negative, just like for the cyclic sy
tem. This leads to a bifurcation diagram that is indistinguis
able from that of the cyclic case. Even the stability along
branches is the same; only the magnitude~not the sign! of
the eigenvalues of the Jacobi matrixJ is slightly different for
the two cases.

Finally, it should be emphasized that the results of
present paper do not depend on the precise form of the
function. We have concentrated on the form given by E
~1!, but virtually everything remains true for other choices
this function, as long as it is a non-negative, one-hump
function, starting out from zero atn50 ~no flux if there are
no particles! and going down to zero again for very man
particles~no flux also in this limit, since—due to the inelast
collisions—the particles form an inactive cluster, unable
reach the hole in the wall anymore!. Any function with these
properties will produce a bifurcation diagram similar to th
of Eq. ~1!.

l
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In the likely case that the range ofs5dn2 /dn1 is the
same, extending from21 ~this value is attained in the max
mum! to zero~in the outer regions of the flux function, fo
n2AB→0, n1AB→`!, the bifurcation diagram will have
the same number of saddle-node bifurcations and the s
number of branches. The only things that change are
exact position of the bifurcation points, and the magnitude
the eigenvalues along the branches.

Slight differences in the diagram would occur if the slo
of F on then1 side was to become steeper than on then2

side. In that case, the bifurcation condition Eq.~8! would
also have solutions form.N/2, thus allowing saddle-nod
bifurcations for branches withm.N/2. These branches
however, would certainly be quite unstable.

APPENDIX: THE EIGENVALUES OF M AND J

In this appendix we present the analytical eigenvalues
the flux matrixM @introduced in Eqs.~4! and ~13!# and dis-
cuss the eigenvalue problem for the Jacobian matrixJ @see
Eq. ~9!#, thereby determining the stability of the branches
the bifurcation diagram.

First, we briefly treat the eigenvalues ofM . After that, we
turn to J. In Subsection 2 we discuss its zero eigenvalu
one eigenvalue is identically zero and, by pinpointing t
zero crossing of a second eigenvalue, we reproduce the
furcation condition Eq.~8!. In Subsection 3 we determine th
number of negative eigenvalues ofJ in the low-driving limit
s→0. Likewise, in Subsection 4 we determine the num
of positive eigenvalues in the~mathematical! limit s
→2`. Combining these two results, in Subsection 5,
finally find the number of positive eigenvalues ofJ for gen-
eral values ofs, and this gives the stability of the branch
over the entire bifurcation diagram.

1. Eigenvalues of matrix M

The matrixM in Eq. ~4! is closely related to theN3N
tridiagonal matrix tridiag~1, 22, 1! associated with the sec
ond difference operator known from numerical schemes
solving second-order pde’s. Its eigenvalue problem can
solved exactly@10#, and the same is true forM . The eigen-
values ofM are given by

lk524 sin2S kp

N D , ~A1!
06130
e
e
f

f

s:
e
bi-

r

e

r
e

wherek runs from 0 toN/2 for N even, and from 0 to (N
21)/2 for N odd. The corresponding eigenvectors are

ai~k!5C1 cosS ~2i 11!kp

N D1C2 sinS ~2i 11!kp

N D
~A2!

with i 51, . . . ,N and arbitrary coefficientsC1 andC2 .
As we see, the first eigenvalue (k50) is zero and the

corresponding eigenvector is15(1,1,...,1). Physically, this
eigenvector represents simultaneous filling of allN compart-
ments, and the eigenvalue 0 expresses the fact that th
prohibited~because the number of particles in our system
conserved!.

All nonzero eigenvalues are negative and~except the one
for k5N/2 in the case of evenN! doubly degenerate. This
means that the corresponding eigenvectors span a
dimensional subspace, reflected by the two termsC1 andC2
in Eq. ~A2!. SinceM is symmetric, and therefore norma
linear subspaces corresponding to different eigenvalues
orthogonal. Especially, the eigenvectors of all nonzero eig
values span aN21 dimensional subspace perpendicular
15(1,1, . . .,1).

The matrix M (nc) for the noncyclic case, given by Eq
~13!, has a different set of eigenvalues:

lk
~nc!524 sin2S kp

2ND . ~A3!

Herek runs from 0 toN21. The corresponding eigenvecto
are

ai
~nc!~k!5cosS ~2i 11!kp

2N D . ~A4!

Just like in the cyclic case, the first eigenvalue equals z
and all the others are negative. However, they are nonde
erate and the corresponding eigenspaces are one di
sional.

2. Zero eigenvalues of matrix J

Now we turn to the Jacobian matrices. We consider
cyclic versionJ, with components as given in Eq.~9!, but the
results are also valid for the noncyclic version. This mat
can be written as the product ofM and a diagonal matrix
D5diag@F8(n1),F8(n2), . . . ,F8(nN)#:
J5M•D5S 22F8~n1! F8~n2! 0 ¯ 0 F8~nN!

F8~n1! 22F8~n2! F8~n3! ¯ 0 0

0 F8~n2! 22F8~n3! ¯ 0 0

] ] ] ] ]

0 0 0 ¯ 22F8~nN21! F8~nN!

F8~n1! 0 0 ¯ F8~nN21! 22F8~nN!

D . ~A5!
4-7
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In the context of the bifurcation diagram, the main thi
one wants to know is the number of positive eigenvalues
J for each branch. This is what we are going to determ
now.

First we note that the eigenvalues ofJ are real, even
though the matrix is not symmetric. This is a consequenc
the following similarity relationship betweenJ andJ†:

J†5~M•D!†5D•M5D•~M•D!•D215D•J•D21.
~A6!

This implies thatJ andJ† have the same eigenvalues, a
hence they must be real. BecauseM is singular,J must be
too ~it has a zero eigenvalue! and so its determinant det(J) is
zero. More explicitly,

det~J!5det~M !• det~D!5S)
k

F8~nk! Ddet~M !50,

~A7!

where, for a fixed point withm filled compartments, the
product term equals@F8(n1)#m@F8(n2)# (N2m).

For the other eigenvalues we have to look at the cha
teristic equation det(J2lI )50. This is a polynomial expres
sion inl, of which the constant term is zero since it is equ
to det(J). The coefficientL of the linear term is

L5(
k

det~ J~k,k!!5(
k

S)
lÞk

l l D , ~A8!

where the matrixJ(k,k) is the (N21)3(N21) matrix ob-
tained fromJ by deleting itskth row and itskth column. In
the right-hand side of this equation, the only product t
survives is the one that does not contain the trivial~zero!
eigenvalue. So

L5 )
all nontrivial l l

l l , ~A9!

Alternatively, the determinant ofJ(k,k) in Eq. ~A8! can be
written in terms of det(M (k,k)), by deleting thekth factor
from the product in Eq.~A7!:

L5(
k

S)
lÞk

F8~nl ! Ddet~M ~k,k!!. ~A10!

It can be shown that for allk the determinant det(M (k,k))
is a constantC that equals (N21)(21)N21 in the cyclic,
and (21)N21 in the noncyclic case. Thus, Eq.~A10! reduces
to

L5C(
k

S)
lÞk

F8~nl ! D . ~A11!

For a fixed point withm filled compartments, we can
write @using that in the above summation each of the pr
ucts misses either anF8(n1) or anF8(n2)#:
06130
f
e

of

c-

l

t

-

L5C@F8~n1!#~m21!@F8~n2!#~N2m21!

3@~N2m!F8~n1!2mF8~n2!#

~A12!
5C@F8~n1!#~m21!@F8~n2!#~N2m!~~N2m!s2m!.

From this equation we conclude thatL becomes zero ats
52m/(N2m). This is exactly the bifurcation condition al
ready given in the main text@Eq. ~8!#. Also, with Eq.~A9!,
we see that an eigenvalue crosses zero at this value ofs.

It can be shown, by a similar analysis, that the coeffici
of the quadratic term is not equal to zero ats52m/(N
2m), so not more than one of the eigenvalues changes
at the bifurcation.

3. Number of negative eigenvalues of J fors\0

We now come to the next step in determining the num
of positive eigenvalues. We again use the definition
s to write: J5F8(n2)M•D̃, where D̃5diag
(1, . . . ,1,s, . . . ,s). The factors 1 correspond to theN2m
nearly empty boxes and the factorss to them filled boxes.
The precise ordering of the factors is not essential for
following argument, so we may choose the above order
notational convenience.

The factorF8(n2) is always positive, so we only have t
deal withM•D̃. Note that onlyD̃ depends ons and that in
the limit s→0 this matrix becomes@11#

lim
s→0

D̃5diag~1, . . . ,1,0, . . . ,0![P, ~A13!

where P is a projection matrix which projectsRN to the
subspace spanned by the firstN2m unit vectors. It is obvi-
ously nonsingular, symmetric, and applying it twice giv
the same result as once:P25P.

Instead of taking the matrixJ05M•P as input for solving
our eigenvalue problem~in the limit s→0!, we will rather
look at the matrixP•M•P which is symmetric and has th
same eigenvalues asJ0 .

For proof of the last statement, letm be a ~nonzero! ei-
genvalue of J0 : J0•x5mx. Then, (P•M•P)•(P•x)
5P•(M•P•x)5m(P•x). Note thatP•xÞ0, because other
wise alsoJ0•x5M•P•x would be zero, contradicting the
assumption thatm is nonzero. This completes the proof.

The matrixM is negative semidefinite. This means thatM
has only negative or zero eigenvalues or, equivalently,
inner product^x,M•x&<0 for all x. This means that also
P•M•P is negative semidefinite, because

^x,P•M•P•x&5^P•x,M•~P•x!&5^y,M•y!<0.
~A14!

In conclusion,J0 has negative and zero eigenvalues only
The remaining task is to identify the number of negati

eigenvalues, or otherwise stated, the rank of the matrixJ0 .
The statement that we shall prove is that rank(J0)
5rank(P)5N2m.

Proof: Note that the image Im(P) of P is spanned by the
first m unit vectors ofRN. Its kernel Ker(P) is spanned by
4-8
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the remainingN2m unit vectors. Since the kernel ofM is
spanned by the vector1, the following identities hold:

Ker~P!ùKer~M !50, ~A15a!

Im~P!ùKer~M !50. ~A15b!

Now, for all xPKer(P) it holds that J0•x5M•(P•x)
50, so Ker(P),Ker(J0). On the other hand, for al
y¹Ker(P) one hasP•y[zÞ0, with zPIm(P), and therefore
J0•y5M•zÞ0 because of Eq.~A15b!. This means that
y¹Ker(J0), and thus Ker(P).Ker(J0). Together these two
results prove that Ker(P)5Ker(J0), so obviously the rank of
the two matrices must be equal. Since rank(P)5N2m, this
is also the rank ofJ0 , which completes the proof.

In short, we have shown that in the limits→0, the Jacobi
matrix J hasN2m negative eigenvalues.

4. Number of positive eigenvalues fors\À`

We now turn to the limits→2`. In this limit we
rewrite J as follows: J5F8(n2)sM•D̄. Here D̄
5diag(s21, . . . ,s21,1, . . .,1), which in the limit s→2`
becomes
06130
lim
s→2`

D̄5diag~0, . . . ,0,1, . . . ,1&[Q. ~A16!

Again, Q is a projection matrix, which now projectsRN to
the subspace spanned by the lastm unit vectors, soQ is
complementary toP. Following the same line of reasoning
but keeping in mind that now the constant factor in front
J2` is negative, we find that in the limits→2`, the matrix
J hasm positiveeigenvalues.

5. Number of positive eigenvalues of J for generals

We are now ready to draw the conclusion. Just belows
50 the matrixJ must, by continuity, have at leastN2m
negative eigenvalues. If we now move from 0 toward2`,
beyond a certain point there must be at leastm positive ei-
genvalues~or equivalently, at mostN2m21 negative ei-
genvalues!. We already know@cf. Eq. ~A12!# that along the
way exactly one eigenvalue changes sign, ats52m/(N
2m). Taken together, this means thatJ hasm positive and
N2m21 negative eigenvalues fors,2m/(N2m), and
m21 positive and N2m negative eigenvalues fors
.2m/(N2m).

This completes the determination of the number of po
tive eigenvalues for the various branches in the bifurcat
diagram.
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