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Bifurcation diagram for compartmentalized granular gases
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The bifurcation diagram for a vibrofluidized granular gasNironnected compartments is constructed and
discussed. At vigorous driving, the uniform distributin which the gas is equi-partitioned over the com-
partmentsis stable. But when the driving intensity is decreased this uniform distribution becomes unstable and
gives way to a clustered state. For the simplest ddse?, this transition takes place via a pitchfork bifurcation
but for all N>2 the transition involves saddle-node bifurcations. The associated hysteresis becomes more and
more pronounced for growindy. In the bifurcation diagram, apart from the uniform and the one-peaked
distributions, also a number of multipeaked solutions occur. These are transient states. Their physical relevance
is discussed in the context of a stability analysis.
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[. INTRODUCTION cussed beforésee Fig. L In the above equation, is the
fraction of particles in thekth compartment, normalized to
One of the key features of a granular gas is the tendencyn,=1. The factorsA andB depend on the number of par-
to spontaneously separate into dense and dilute regioniles and their propertieuch as the radius, and the resti-
[1-6]. This clustering phenomenon manifests itself in a partution coefficient of the interparticle collisionson the ge-
ticulal’ly clear manner in a bO-X that is divided |n a S(.El’ie_NOf Ometry of the Systerfsuch as the p|acement and form of the
connected compartments, W|th a hoéé a certain heightin aperture between the compartmenend on the driving pa-
the wall between each two adjacent compartments. The Sygametergfrequency and amplitugeThe factorA determines
tem is vibrofluidized by shaking the box vertically. With o apsolute rate of the flux, and will be incorporated in the

vigorous shaking the granular material is observed to be di; e scale, which thus becomes dimensionless. The cluster-
tributed uniformly over the compartments as in any ordinary.

. . ing transition is governed only big.
molecular gas. Below a certain driving level, however, the The time rate of changs, of the particle fraction in the
fmgrticleilstﬁlusttehr In a small subset of the compartments, emp, compartment is given t;<y the inflow from its two neigh-
ying all the others. . X
For N=2 the transition from the uniform to the clustered bors minus the outflow from the compartment itseff,

state is of second order, taking place through a pitchfork
bifurcation[7]. ForN=3 it was recently found that the tran-
sition is hysteretic. It is a first-order phase transition, involv-
ing saddle-node bifurcations8]. This difference has been
explained by a flux model. In the present paper we will use

the same flux model to construct the bifurcation diagrams fo}'.‘”th .k: 1’2'. -+ N He.re we _have assumed that the interac-
arbitrary N, tion is restricted to neighboring compartments only.

The main ingredient of this model is a flux functieign), For a cyclic arrangement the above equation is valid for

which gives the outflow from a compartment to one of itsaII N compartments(wnh k=N_+_1 equal tok=1)_. If we
neighbors as a function of the fraction of particles con- take noncyclic boundary conditions, by obstruc_;tlng the flux
tained in the compartmef?]. The functionF(n) starts out bet\é\{?eg two Odf. thle (]:,orrlﬁartments, thte eqtuatlon has to be
from zero atn=0 and initially increases witm. At large mo_”l]let ?Clcor IIE)gy ?r ?_sle C()_mﬂfll’ mertl S d
values ofn it decreases again because the particles lose ens € total humber of particies in the system 1S conserve

n=F(ng_1) —2F(n) +F(ny;q), (2

ergy in the nonelastic collisions, which become more an 2=1), so

more frequent with increasing particle density. 5n) is

nonmonotonic, and that is why the flux from a well-filled

compartment can balance that from a nearly empty compart- 2 f=0. 3)
ment. K

Assuming that the granular gas in each compartment is in
thermal equilibrium at any timén the sense of the granular

temperaturd9]) the following approximate form fof (n) Statistical fluctuations in the system would add a noise
can be derived7]: term to Eq.(2), but we will not consider such a term here. So
- the present analysis has to be interpreted as a mean field
F(ng)=An2e BNk, (1)  theory for the system.

Equation (2) can also be written in matrix-form, as
which is a one-humped function, possessing the features dis=M - F, or more explicitly:
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: FIG. 1. The solution:_ andn, of F(n,)=const, cf. Eq.(5).
1 0 O 0 -+ 1 -2 F(ny) Also shown is how the flux balance responds to an increase of
by an amount ofSn [see also Eq(11)]. The diagram on the right-

The given matrixM corresponds to a cyclic arrangement "and side depicts the relation betwe€nand the quantityo
of the N compartments. A similar matrix can be written =F'(n_+)/F’(n,), which plays an important role in the stability
down for the case of a noncyclic arrangement. We will come®"@lysis of Sec. lil.
back to this later, when we will see that most of the results,[he ordering of the elements. every fixed point is then speci-
for the cyclic arrangement carry over to the noncyclic case, 9 ' y P P

It is easily seen, from the fact that the elements of eacﬁIed by only two numbersn_+ andm . . . i
row of M sum up to zero, that=(L1,1, .. .,1) is areigen- Before actually calculating the bifurcation diagram, it is

vector. The corresponding eigenvalde=0 physically re- convenignt o replace the fractionby the(also.dim.e.nsion—
flects the fact that the compartments cannot all be fi{tad less varéablez:Nn\/E, as then_ the f'“@ simplifies to
emptied simultaneously> =0 or 3,M=0. For future F(2J*Z exp(-%). The fixed-point condition Eq(5) then

reference we note that all the other eigenvaluesvioire ~ "€ads
negative(see the Appendjx
The remainder of the paper is set up as follows. In Sec. Il F(z)=const,
we show how to construct the bifurcation diagram, on the (6)
basis of Eq(4), for an arbitrary number of compartments. In 2 2= NyB

Sec. lll we discuss the stability of the various branches in the
diagram. Section IV discusses the physical consequences re-
sulting from the diagram, in particular in the limit fdx So the B dependence has been transferred frento the
—. Finally, Sec. V contains concluding remarks. The pa-particle conservation, and this enables us to determine the
per is accompanied by a mathematical Appendix, in whichentire bifurcation diagram from a single graph. This is illus-
some essential results concerning the stability analysis arteated in Fig. 2 for the case =5 compartments.
derived.

101

IIl. CONSTRUCTING THE BIFURCATION DIAGRAM Z(F) S
5
To calculate the bifurcation diagram, we have to find the ; Sy
fixed points of Eq(4) as a function of the parametBy i.e.,
those points for whiclm,=M - F=0. SoF must be a multiple 6 S3
of the zero-eigenvalue vectdr=(1,1,...,1). This tells us = f-ememieeee oo e N\B
that, in a stationary situation, all components of the flux vec- 5 :
tor F are equal: there is a detailed balance between all pairs 4+ 2
of neighboring compartments. This rules out, for instance, S
the possibility of stable wavelike patterns with equal but So
nonzero net fluxes throughout the system. The fixed-point 2+ zy
condition now becomes
0 =
F(ny) = const, 0 01 02 03 _ 04
(5 F
E ne=1. FIG. 2. Inverted flux functiong_(F) and z,.(F) and theN

+1 sum functions S,(F)=mz (F)+(N-m)z_(F), m
) ) ) =0,1,...N. Here we picked\=5. The points of intersection with
SinceF is a one-humped functiofi; (ny) =const has tWo e horizontal linez=N+B represent the fixed points for the pa-
solutions, which will be calledi_ andn, (see Fig. 1L Every  yameter valueB. CurvesS, andSs correspond to the uniform dis-
fixed point can be represented as a vector with elements  tribution (below and above the critical poiBt= 1, respectivelyand
andn_ (in any order, and summing up t9 dorresponding to  the other curves belong to clustered states. Note Sjafoins
a row of nearly empty and well-filled compartments. Let ussmoothly withS; atB=1 (i.e., z=NyB=5), and so doe$, with
call the number of well-filled compartments. Apart from  S,, andS, with S;.
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FIG. 3. Bifurcation diagram foN=5. It has been obtained from
Fig. 2 by converting, for alB, each{z_,z,} pair belonging to a
point of intersection to §n_ ,n, } pair. Note that all branches come
together at the critical poinB=1. The (stable¢ m=0 branch be-
comes the€unstablé m=5 branch, then=1 branches turn into the
m=4 branches, anth=2 switches tom=3.

First, the one-humped functidf(z) is inverted separately
on both sides of the maximum, yielding the functiangF)
andz, (F). Then, we construct the sum functions

Sm(F)=mz.(F)+(N-m)z_(F). (@)

Now, from Eq.(6), the fixed points are found by inter-
secting the horizontal line=N+/B with the sum functions
Sn(F). In Fig. 2 this is done foB=1.08. Each intersection
point yields a paifz_,z,}, or equivalently{n_,n }. Re-
peating the procedure for aB, we obtain the bifurcation
diagram depicted in Fig. 3.

It contains several branches. First, a horizontal (finem
the sum functionsS, and S;) corresponding to the equal

distributionn, =n_=0.2=1/N. Second, the branches corre-

sponding to then=1 clustered statéfrom S;), which atB
=1 goes over into then=4 state(from S,). And third, the
branch of them=2 clustered statéfrom S,), which atB

PHYSICAL REVIEW E63 061304

(dz+) =T N—m ®)

Not surprisingly, the quantity on the left-hand side
(dz_/dz,=0) will play an important role in the stability
analysis of the next section.

Ill. STABILITY OF THE BRANCHES

The stability of the branche@.e., of the fixed pointsis
determined by the eigenvalues of the Jacobi matroorre-
sponding to Eq(4), with components

_(9nJ _2 , an| _ ,
J“‘_a—nk_ | M;F (n|)(7—nk—Mij (N 9

HereF' denotes the derivative d¢f with respect ton. Note
that the Jacobi matrix can also be written as the produbt of
and the diagonal matrib=diagF'(n,),...,F'(ny)), see
also Eq.(A5) in the Appendix. For a fixed point the only
diagonal elements that occur afF€(n,) (m times and
F’'(n_) (N—mtimes, in any order. The ratio between these
two functions is precisely the quantity we encountered ear-
lier in the bifurcation condition Eq8), namely,o :

_F’(n+)_dn_
CF'(n_) dny’

(10

o

The Jacobi matrixJ] hasN eigenvalues, one of which is al-
ways zero. The othéd — 1 eigenvalues depend omand the
value ofg.

For m=0 (the equipartitioned stakall nontrivial eigen-
values are negative, up to the poBit=1. This can be seen

=1 becomes then=3 state. The physical appearance ofeither by direct numerical calculation, or analyticaléee the
these solutions is sketched in the small diagrams. Note th&ppendiy. At B=1, the m=0 state becomes the=N

only the m=0 branch(i.e., the uniform solution up td

state. Here, the functiors’ in the Jacobi matrix9) change

=1) and the outem=1 branch are stable. All the other sign, and so do all of its eigenvalues. So suddenly the uni-
branches are unstable, as will be discussed in the next seform state hasN—1 positive eigenvalues, which implies a

tion.

high degree of instability. Only in the limB—« does the

At B=1, where the branches intersect with the uniformuniform state regain some of the lost terrain: the magnitude

distributionn, =n_=1/N, we have a critical point. In the

of all positive eigenvalues tends to zero here. Physically

flux function one passes the maximum here. This means thapeaking, in this limit the vibrofluidization is too weak to

n, andn_ are switchedrelatively empty compartments be-

come relatively filled, and vice versaom-branches change

drive the particles out of the boxes anymore.
As for the other values af, in Fig. 4 we have plotted the

into (N—m)-branches. From a physical point of view, the numerically evaluated eigenvaluess functions ofr) for the

most important thing that happens at tBe-1 intersection

point is the destabilization of the uniform distribution.
The saddle-node bifurcations of thm=1 and m=2

branches correspond to the minima of the sum funct®ns

system withN=5 compartments.

Form=1, we see that there are three eigenvalues that are
always negative. The fourth nontrivial eigenvalue changes
sign ato=—0.25. This corresponds to the saddle-node bi-

andS,, respectively, which in Fig. 2 can be seen to occur affurcation of them=1 branch in the bifurcation diagraffig.

F~0.014 forS; andF~0.202 forS,. In general, if a sum
function S,,(F) has a minimum for a certaiB, the associ-

3), and the bifurcation value af is in agreement with Eq.
(8). The region to the right obr=—0.25 (where all non-

ated m branch will have a bifurcation. So the bifurcation trivial eigenvalues are negativéelongs to the stable outer

condition is that the derivative S,,(F)/dF equals zero, or
equivalently

branch. The left parsr<< —0.25 belongs to the unstable inner
branch, up to the poilB=1 (at o= —1), where them=1
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FIG. 5. Bifurcation diagram foN=6. Note the pitchfork bifur-
cation atB=1.

never becomes completely stabl&s a matter of fact, only
‘2_1 [ A ‘2_1 [ A the m=0 branch and part of thev=1 branch can be com-
pletely stable. Note that forc—0 (large B) the positive
FIG. 4. Eigenvalues of the Jacobi matdxas a function ofe,  eigenvalue tends to zero, so the degree of instability is quite
for the branchesn=1, 2, 3, and 4. Rather than plotting, we weak there.
displayX;=\;/F’(n_), because this yields a more clear-cut pic- At B=1 the m=2 branch becomes thm=3 branch,
ture. Negative eigenvalues represent stable directions of thgiith the two configurationd——+++} and {—+—++1},
branches, and positive eigenvalues represent unstable ones. A zg{ad with all eigenvalues switching sign. As we see, the more

crossing(such as fom=1 andm=2) indicates the occurrence of a gispersed configuration is again the less unstable one. Also
saddle-node bifurcation. The value=0 corresponds to the limit

B—w, and o=—1 to the critical pointB=1. At this point, the
eigenvalues ofn=1 andm=4 are equal but opposite in sign: the
transition from one branch to the other is marked by a distinct dropapparent. .
in stability. The same is true for the eigenvaluesnof2 andm In the present example fo4=5, and, in fact, for all odd
=3, and alsonot depictedl for those ofm=0 andm=5. Form values ofN, the branches in the bifurcation diagram are all
=2,3 there are two different cluster configurations with differentorn by means of a saddle-node bifurcation. But éoen
eigenvalues. The dashed lines correspond+e-———} for m values ofN this is different: in that case there is one branch-
=2, which goes over intd——+++} for m=3. The bold lines pair that springs from the uniform distribution, B&t=1, by a
apply to the slightly more stable configuratiofis—+——} and  pitchfork bifurcation. This is illustrated in Fig. 5 foN=6.
{—+—++h Here one sees all the branches that were present already for
N=5, only slightly shifted toward the left, plus an additional

branch goes over i_nto them=4 branch. That is, the state pair of branchesri=3) bifurcating in the forward direction
{+————} now switches td—++++}. At the same time from B=1

all eigenvalues change sign, so suddenly we have three posi- The special status of the branah=N/2 is also evident

tive eigenvalues, which is only one less than that for th ; . . "
uniform m=5 state.(Indeed, the only stable manifold of the efrqm Eq.(8), Wh'Ch tells us that thg_blfu_rcatlo_n condition for
this branch isoc=—1. This condition is fulfilled only by

m=4 fixed point comes from the direction of the completely ) i

unstablem=5 state) The positive eigenvalues do not cross "+~ N-= 1/yB=1N. So, unlike all other branches, this one

zero anymorgthere are no bifurcations beyorg=1) but, ~ °rginates aB_zl from the(qntll then stabl}sunlform state.

as before, in the limiB—» (o—0) they go to zero. Related to thls_,, the branch is the only one that is symmetric
For m=2 there are two possible configurations: for interchangingn. andn_.

{++———} and{+—+——}. Due to the cyclic symmetry,

all other combinations are equivalent to these two. The ei-

genvalues of the first configuration are given by the dotted IV. PHYSICAL ASPECTS

lines, and those of the second by the solid lines. Although ) . ) _ )

they are very similaand are represented by exactly the The bifurcation analysis from the previous sectl_on can

same branch in the bifurcation diagrarit is clear that the @S0 be understood from a more physical point of view. To

second configuration is the more stable of the two. Apparihis end, let us first have a closer look at a two-box system.

ently the two well-filled compartments prefer to keep a dis-In the equilibrium situation the net flux between the two

tance. boxes is zero, with one filledn(,) and one nearly empty
The saddle-node bifurcation of th@=2 branch takes (n-) box. Suppose the level of the empty box is raised by an

place ato=—% [cf. Eq. (8)], where the third nontrivial ei- amountén. The level of the filled box then decreases by an

genvalue goes through zero. The fourth nontrivial eigenvaluequal amount and the net flux_ _, . from the empty to the

always remains positive, indicating that thme=2 branch filled box becomegsee also Fig. )t

the phenomenon of all positive eigenvalues going to zero as
o approaches zer@the weak driving limitB—) is again
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¢__.,=F(n_+6én)—F(n,.—én)

(11)
3 dF dF Sne (1 dF 5
B dn,+dn+ n=(1+o) gu-on

where we have used=dn_/dn, and neglected the higher-
order terms in the Taylor expansion. There are two different
regimes. Ifo>—1, the net flux is positivgas F'(n_) is
always positivg so particles are flowing fronm_ to n_,
restoring the equilibrium position. This is actually the situa-
tion along the entiren=1 branch, for all KB<«. For ¢

< —1 (a situation that does not occur for our choiceFof,

the net flux would be negative, raising the level of the emp-
tier box even further, away from the equilibrium position. In
the borderline caser=—1 (at B=1), the system is indif-
ferent to infinitesimal changes.

This argument is readily generalized to the
N-compartment system, for an equilibrium with filled
boxes. Now we raise the level of alN—m nearly
empty boxes simultaneously hin. This is done by lower-
ing all levels in them filled boxes by an equal amount,

FIG. 6. Results from a numerical solution of E@l) for N
=80, atB=0.90. Snapshots are taken aftef,10¢?, 10, and 16
time stepgiterationg. Between 100 and 10 000 iterations a cluster-

which by particle conservation must be equal to, ) ) : -
sn(N—m)/m. The equivalent of Eq(11) for the flux be- ing pattern is seen to take shape. Although, strictly speaking, this is
) d q a transient state, the system gets stuck in it.

tween any of the empty boxes to a neighboring filled box
then reads:

N—m one will never witness the transition to the uniform distribu-
é_ . =F(n_+én)— ;:( n, — 5n) tion. Vice versa, also the transition from the uniform solution
to them=1 state will not occur in practice, even though the
uniform distribution becomes unstableB# 1. If one starts
:( dF + N—m dF ) n (12) out from the uniform solutiorfat a certain value oB below
dn_ m dng 1) and increaseB, one will witness the transition to a clus-
tered state, but in practice this will always be one with a
E s number of peaks. That is, the system gets stuck in a transient
dn_ n: state withm>1, even though such a state is not stdfileas
one or more positive eigenvalyes

From this expression it follows that the transition between a The fact is that its lifetime may be exceedingly large,
(relatively) stable[o>—m/(N—m)] and a(relatively) un- since the flux in the neighborhood of a peak and its adjacent
stable[ o< —m/(N—m)] configuration is marked by the bi- boxes(which are practically emp}yis very small. Further-
furcation condition Eq(8). So, by straightforward physical more, the communication between the peaks is so poor
reasoning we have reproduced the exact result obtained edhat usually(even for moderate values o) the dynamics

“INEmT Y

lier from an eigenvalue analysis. comes to a standstill in a state with peaks of unequal
The pitchfork bifurcation discussed at the end of Sec. Illheight.
is especially important foN=2. In this case it is thenly Another point we would like to address is that practically

nonuniform branch. To be specific, it is a stable=1  the transition to a clustered state will take place already be-
branch. ThisN=2 case[7] is the only one without any fore B=1, because the solution is kicked out of its basin of
saddle-node bifurcations, and consequently it is the only casgxtraction by the statistical fluctuations in the sys{@h An
where the change from the uniform to the clustered situatiogyxample is shown in Fig. 6. Here we see a snapshot for the
takes place via a second-order phase transition without anyclic system withN==80 compartments, which were origi-
hysteresis. For am>2 the transition is of first orddB], and nally filled almost uniformly, aB=0.90. The small random
shows a hysteretic effect that becomes more pronounced f@fctuations in the initial condition are sufficient to break
growing N. away from the(still stable uniform distribution, and one

In the limit N—« the hysteresis is maximal: the first witnesses the formation of a number of isolated clusters. In
saddle-node bifurcation takes place immediately éter0,  the further evolution these clusters deplete the neighboring
and this means that there exists a stable1 solution over compartments and indeed the whole intermediate regions.
the entire rang®>0. So, if one starts out from this solution But the peaks themselves, once they are well-developed, do
(at a certain value oB) and then gradually turns dow,  not easily break down anymore.
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038 0.9 10 11 B 12 The last saddle-node bifurcation takes place shortly before
: B=1 and, for this even value df, is followed by a final
pitchfork bifurcation(creating them=N/2 branch atB=1.

The uniform solution(or m=0 state is stable untilB
=1, with N—1 negative eigenvalues and 1 zero. Bor 1
all its negative eigenvalues become positive, making it sud-
denly the most unstable state of all. Also, it now formally
becomes than=N state. Moving away from this uniform
solution one encounters first tre=N—1 branch withN
—2 positive eigenvalues, then time=N—2 branch withN
— 3 positive eigenvalues, etc. Finally, one arrives at the out-
ermostm=1 branch, which has no positive eigenvalues.
This is the only solution that is completely stable &®r 1.
0.2+ But as we have seen in the previous section, on its way from
the uniform distribution to the single-peaked state, the

0.0 system can easily get stuck in one of the transient states

0.0 0.5 1.0 15 B 20 (especially for largeN) even though these are not strictly
stable.

FIG. 7. Bifurcation diagram foN=80. The hysteresis extends  Throughout the paper, we have concentrated on the case
almost all the way down t8=0, and there are numerous transient where theN compartments are arranged in a cyclic manner.
states(cf. Fig. 6). The only strictly stable branches are the=0 But in doing so, we have in fact also solved the noncyclic
branch(up to B=1) at n,=1/N, and the outem=1 branches. case. Here we close the hole in the wall between the first and
Naturally, the uppem=1 branch approaches=1, the uppem  Nth compartments, and consequently the flux between them
=2 branch approacheg=1/2, the uppem=3 branchn,=1/3, s zero. The matriM then takes the following forrfdiffer-

etc. The overlay picture shows the neighborhood of the criticaling from the cyclic one only in the first and last row, cf.
point atB=1, n,=1/N in more detail. Eq. (4)]:

V. CONCLUDING REMARKS

In this paper we have constructed the bifurcation diagram tod 0 0
for a vibrofluidized granular gas iN connected compart- 1 -2 1 0
ments. Let us now comment upon the result. 0 1 -2 1

Starting out fromB=0, i.e., vigorous shaking, the equi- M e =
partitioned state is for some time the orignd stablg fixed
point of the system. For increasifwe first come upon the c 0 0 O -2 1
m=1 bifurcation, where the single-cluster state is born. For O 0O O0 o 1 -1

all N> 2 this happens by means of a saddle-node bifurcation, (13)
creating one completely stable state and one unstable state
(with one positive eigenvalyeThe one with the largest dif-
ference betweem, andn_ is the stabler one of the two  The eigenvalue problem for this matrix is treated in the
states. Strictly speaking, there adeequivalent single-cluster Appendix. One eigenvalue is identically zero, and the other
states, since the cluster can be in any offh®ompartments. N-—1 eigenva|ues are negati\/e, just like for the Cyc”c sys-
For further growingB we come across the=2 bifurca-  tem. This leads to a bifurcation diagram that is indistinguish-
tion, where two unstable two-peaked states are created. Thgle from that of the cyclic case. Even the stability along the
state with the largest difference between andn_ has one pranches is the same; only the magnitydet the sign of
positive eigenvalue, and the other has two. The two peakghe eigenvalues of the Jacobi matiiss slightly different for
can be distributed in)) ways over theN compartments, but the two cases.
as we have seen they are not all equivalent. When the peaks Finally, it should be emphasized that the results of the
are situated next to each other we have a more unstable sitpresent paper do not depend on the precise form of the flux
ation (the positive eigenvalues are larger in magnijuth@n  function. We have concentrated on the form given by Eq.
when the peaks are further apart. This is generally true fo(l), but virtually everything remains true for other choices of
m-peaked solutions: of the\j ways in whichm peaks can be this function, as long as it is a non-negative, one-humped
distributed, the ones in which the peaks are next to eacfunction, starting out from zero at=0 (no flux if there are
other are the least favorable of all. no particle$ and going down to zero again for very many
For increasingB we encounter more and more bifurca- particles(no flux also in this limit, since—due to the inelastic
tions, where unstablerclustered states come into existencecollisions—the particles form an inactive cluster, unable to
(each with 1 more positive eigenvalue than the previougeach the hole in the wall anymgreAny function with these
one, and for largeN the bifurcation diagram is covered by a properties will produce a bifurcation diagram similar to that
dense web of branches. In Fig. 7 this is shownXor80.  of Eq. (1).
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In the likely case that the range of=dn_/dn, is the  wherek runs from 0 toN/2 for N even, and from O toN
same, extending from-1 (this value is attained in the maxi- —1)/2 for N odd. The corresponding eigenvectors are
mum) to zero(in the outer regions of the flux function, for

n,\/§—>0, n+\/§—>oo), the bifurcation diagram will have (2i+ 1)k [ (2i+ 1)k

the same number of saddle-node bifurcations and the same 2i(K)=C1 COE( N +Casin N )
number of branches. The only things that change are the (A2)
exact position of the bifurcation points, and the magnitude of = | ] o

the eigenvalues along the branches. with i=1, ... N and arbitrary coefficient€, andC,.

Slight differences in the diagram would occur if the slope ~ AS We see, the first eigenvalu&<0) is zero and the
of F on then, side was to become steeper than onrthe ~ corresponding eigenvector Is=(1,1,...,1). Physically, this
side. In that case, the bifurcation condition EE) would  €igenvector represents simultaneous filling of\attompart-
also have solutions fom>N/2, thus allowing saddle-node Ments, and the eigenvalue O expresses the fact that this is
bifurcations for branches witim>N/2. These branches, prohibited(because the number of particles in our system is

however, would certainly be quite unstable. conservedl _ _
All nonzero eigenvalues are negative gedcept the one

for k=N/2 in the case of evell) doubly degenerate. This

means that the corresponding eigenvectors span a two-
In this appendix we present the analytical eigenvalues oflimensional subspace, reflected by the two te@psindC,

the flux matrixM [introduced in Eqs(4) and(13)] and dis- in Eg. (A2). SinceM is symmetric, and therefore normal,

cuss the eigenvalue problem for the Jacobian malkifigee linear subspaces corresponding to different eigenvalues are

Eq. (9)], thereby determining the stability of the branches inorthogonal. Especially, the eigenvectors of all nonzero eigen-

the bifurcation diagram. values span &—1 dimensional subspace perpendicular to
First, we briefly treat the eigenvaluesidf. After that, we  1=(1,1,...,1).

turn to J. In Subsection 2 we discuss its zero eigenvalues: The matrix M("® for the noncyclic case, given by Eq.

one eigenvalue is identically zero and, by pinpointing the(13), has a different set of eigenvalues:

zero crossing of a second eigenvalue, we reproduce the bi-

furcation condition Eq(8). In Subsection 3 we determine the [ km

number of negative eigenvaluesdfn the low-driving limit \NO=—4 Slﬁ(m)- (A3)

o—0. Likewise, in Subsection 4 we determine the number

of positive eigenvalues in thgmathematical limit o Herek runs from 0 toN— 1. The corresponding eigenvectors

— —oo, Combining these two results, in Subsection 5, weare

finally find the number of positive eigenvalues bfor gen-

APPENDIX: THE EIGENVALUES OF M AND J

eral values ofo, and this gives the stability of the branches (n) (2i+1)km
over the entire bifurcation diagram. ai " (k)=co 2N : (A4)
1. Eigenvalues of matrix M Just like in the cyclic case, the first eigenvalue equals zero,

The matrixM in Eq. (4) is closely related to thélx N and all the others are negative. However, they are nondegen-
tridiagonal matrix tridiagl, —2, 1) associated with the sec- erate and the corresponding eigenspaces are one dimen-
ond difference operator known from numerical schemes fosional.
solving second-order pde’s. Its eigenvalue problem can be . )
solved exactly{10], and the same is true fdi. The eigen- 2. Zero eigenvalues of matrix J
values ofM are given by Now we turn to the Jacobian matrices. We consider the

cyclic versionJ, with components as given in E@), but the
results are also valid for the noncyclic version. This matrix
)\k:—4sinz(k—w) (A1) can be written as the product & and a diagonal matrix
N/’ D=diadF'(ny),F'(ny), ... ,F' (ny)1:

—2F'(ny)  F'(ny) 0 0 F'(ny)
F'(ny))  —2F'(ny)  F'(ng) -+ 0 0
0 F'(n,) —2F'(ng) - 0 0
J=M.D= . : : . . (A5)
0 0 0 <o —2F'(ny_q) F'(ny)
F'(ny) 0 0 F'(nn-1) —2F'(ny)
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In the context of the bifurcation diagram, the main thing| =C[F'(n,)]™ Y[F’'(n_)JN-m"D
one wants to know is the number of positive eigenvalues of
J for each branch. This is what we are going to determine X[(N—m)F’(n,)—mF'(n_)]

now. (A12)
First we note that the eigenvalues dfare real, even  =C[F'(n )™ Y[F (n_)]N"™((N=m)o—m).
though the matrix is not symmetric. This is a consequence of ) )
the following similarity relationship betweehandJ™: From this equation we conclude thiatbecomes zero ar
=-—m/(N—m). This is exactly the bifurcation condition al-
J'=(M.D)'=D-M=D-(M-D)-D"!=D-J.-D" 1. ready given in the main teXEq. (8)]. Also, with Eq.(A9),

(A6)  We see that an eigenvalue crosses zero at this value of
It can be shown, by a similar analysis, that the coefficient
This implies that! andJ"™ have the same eigenvalues, and©of the quadratic term is not equal to zero @t —m/(N
hence they must be real. Becaudeis singular,J must be ~ —mM), so not more than one of the eigenvalues changes sign
too (it has a zero eigenvaliiand so its determinant ddj(is  at the bifurcation.
zero. More explicitly,
3. Number of negative eigenvalues of J for—0

detJ)=de(M)- de{D)= ( H F’(nk)) de(M)=0, We now come to the next step ir_1 determining th_e _n_umber
K of positive eigenvalues. We again use the definition of

o to write: J=F'(n_)M-D, where D=diag

, . . , 1,...,1pg,...,0). The factors 1 correspond to tie—m

where, for a fixed point ertnhn filled E:'\?Tn[))artments, the nearly empty boxes and the factarsto the m filled boxes.

product term equalsF’(n,)]"[F'(n-)] - The precise ordering of the factors is not essential for the

For the other eigenvalues we have to look at the characy)iowing argument, so we may choose the above order for
teristic equation ded(— A1) =0. This is a polynomial expres- 5iational convenience.

sion in\, of which the constant term is zero since it is equal
to detQ). The coefficientL of the linear term is

(A7)

The factorF’(n_) is always positive, so we only have to

deal withM - D. Note that onlyD depends orr and that in
the limit c— 0 this matrix becomefl1]
L=2> de(J =2 (H m), (A8) -
z < | ik lim D=diag1,...1,0,...,0=P,  (AL3)
o—0

where the matrixJ*¥ is the N—1)x (N—1) matrix ob- _ o _ . .

tained fromJ by deleting itskth row and itskth column. In ~ Where P is a projection matrix which project8" to the
the right-hand side of this equation, the only product thagubspace spanned by the fikst-m unit vectors. It is obvi-

survives is the one that does not contain the triyisdrg ~ Ously nonsingular, symmetric, and applying it twice gives
eigenvalue. So the same result as once?="P.

Instead of taking the matri3,=M - P as input for solving
our eigenvalue problerfin the limit c—0), we will rather
L= II . (A9) ook at the matrixP-M - P which is symmetric and has the
all nontrivial, same eigenvalues dg.
. ) . For proof of the last statement, lgt be a(nonzerg ei-
Alternatively, the determinant a¥*% in Eq. (A8) can be genvalue of Jy: Jo-x=ux. Then, ©-M-P)-(P-x)
written in terms of detl®®K), by deleting thekth factor =P-(M-P-x)=,3.(P-x§. Note 'thatp.x;ﬁo, because other-
from the product in Eq(A7): wise alsoJy-x=M-P-x would be zero, contradicting the
assumption that. is nonzero. This completes the proof.
L= 2 (H F’(m)) det(MkK) (A10) A The matrixM_is negative sgmidefinite. This means tvat
kK \i#k as only negative or zero eigenvalues or, equivalently, the
inner product(x,M-x)=<0 for all x. This means that also
It can be shown that for akt the determinant dey(“¥)  P-M-P is negative semidefinite, because
is a constanC that equals K—1)(—1)N"! in the cyclic,
and (— 1)N"1in the noncyclic case. Thus, E¢A10) reduces
to

(X,P-M-P-X)=(P-x,M-(P-x))=(y,M-y)<0.
(A14)

In conclusion,Jy has negative and zero eigenvalues only.
LZCE (H F’(n,)). (A1) The remaining task is to identify the number of negative
K\ T#k eigenvalues, or otherwise stated, the rank of the mayix
The statement that we shall prove is that ralgk(
For a fixed point withm filled compartments, we can =rank(P)=N-—m.
write [using that in the above summation each of the prod- Proof. Note that the image In®) of P is spanned by the
ucts misses either aa’(n,) or anF'(n_)]: first m unit vectors ofRN. Its kernel Kerp) is spanned by
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the remainingN—m unit vectors. Since the kernel ol is
spanned by the vectdr, the following identities hold:

Ker(P)NKer(M)=0, (Al5a)

Im(P)NKer(M)=0. (A15b)
Now, for all xe Ker(P) it holds thatJy-x=M-(P-X)
=0, so KerP)CKer(Jy). On the other hand, for all
y ¢ Ker(P) one had-y=z+#0, with ze Im(P), and therefore
Jo-y=M-z#0 because of Eq(Al5b). This means that
y ¢ Ker(Jg), and thus KerP) DKer(Jy). Together these two
results prove that KeR) =Ker(J,), so obviously the rank of
the two matrices must be equal. Since ra?k¢ N—m, this

is also the rank ofly, which completes the proof.
In short, we have shown that in the limit— 0, the Jacobi
matrix J hasN—m negative eigenvalues.

4. Number of positive eigenvalues foror— — o«

We now turn to the limito— —. In this limit we

rewrite J as follows: J=F'(n_)cM-D. Here D
=diag@e %, ...,011,...,1), which in the limitc— —
becomes

PHYSICAL REVIEW E63 061304

lim D=diagOo,... 0,1, ...

g— —®

1=Q.  (A16)

Again, Q is a projection matrix, which now projec¥" to
the subspace spanned by the lastunit vectors, soQ is
complementary td®. Following the same line of reasoning,
but keeping in mind that now the constant factor in front of
J_., is negative, we find that in the limit— — o, the matrix

J hasm positiveeigenvalues.

5. Number of positive eigenvalues of J for generabr

We are now ready to draw the conclusion. Just betow
=0 the matrixJ must, by continuity, have at least—m
negative eigenvalues. If we now move from O towareb,
beyond a certain point there must be at leagpositive ei-
genvalues(or equivalently, at mosN—m—1 negative ei-
genvalues We already knowcf. Eq. (A12)] that along the
way exactly one eigenvalue changes sign,gat —m/(N
—m). Taken together, this means thhhasm positive and
N—m—1 negative eigenvalues far<-—m/(N—m), and
m—1 positive and N—m negative eigenvalues fowr
>-—m/(N—m).

This completes the determination of the number of posi-
tive eigenvalues for the various branches in the bifurcation
diagram.
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